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Grouped data

Notation: When a variable z;, is indexed by ¢ and g, z., refers to the
vector consisting of all the z;,'s with the given value of g.

Yig = XigB+ €49, t=1,...,n, g=1,..., M.

g indexes groups (states, gender, age brackets, etc.), ¢ indexes observations
(people, years, firms, etc.).



GLS: two step

Assume residual correlation within groups, but not between:

Var(e.,) =€, all g, Cov(e.g,e.n) =0.

Estimate by OLS on all data, use the estimated 5 to form ¢ =y — X3,

estimate () as
M

Q=) 2.,
g=1
Then the full nM x nM FE|ee’] matrix is block diagonal, with copies of (2
down the diagonal. The estimated (2 converges in probability to the true
value as g — oo by the law of large numbers, so we can be use it for feasible
GLS estimation.



GLS: Likelihood approach

Assume normality, write down the likelihood for the sample, base
inference on it:

\QI_M/2 (277)_M"/2@—% g1 (9= XgB) QN (y.g—X g8)

Because (2 is symmetric, it contains (n? + n)/2 coefficients.



Clustered covariance matrix for 5.
Assume
E[X'ee'X ZX £.g€ X g

That is, no correlation of X' e, W|th X! e, for g # h, but arbitrary
covariance, constant across g, when g = h.

Then apply the usual “robust” standard error form:
Var(Bors) = (X'X)LE[X'ee’ X] (X' X) !

Replacing the central expectation with

ZXg £.g€gX

This is called a clustered robust covariance matrix.



Which: OLS, GLS 2-step, GLS Likelihood, OLS with
sandwich?

A very common set of trade-offs here.

Straight OLS with 0%(X’X)~! covariance matrix is the most accurate
and efficient if its assumptions are correct.

Of the estimates that allow for Var(e.,) # o2, OLS with sandwich is
easiest on the researcher’s brain. No need to think about a structure for
(2 or to defend the assumption of Ele.,e.4] constant across groups.

OLS with sandwich is a little more algebra than straight OLS with
0%(X'X) ! covariance matrix, but the computer does that with a single
button.



e Drawback: If there is a non-scalar covariance matrix for €, one can do a
better job of estimation, obtaining more precise results, by modeling the
form of the covariance matrix.

e The sandwich estimator replaces clear assumptions that justify the
procedure with untestable claims that approximations that work well
when g — oo are reliable in the current sample. (This is true of any
appeal to asymptotic theory.)



Which: OLS, GLS 2-step, GLS Likelihood, OLS with
sandwich?

o Likelihood-based GLS, if its assumptions are correct and the residual
covariance matrix is non-scalar, is more efficient than OLS and also
provides a correct distribution for 5 in finite samples.



Which: OLS, GLS 2-step, GLS Likelihood, OLS with
sandwich?

Likelihood-based GLS, if its assumptions are correct and the residual
covariance matrix is non-scalar, is more efficient than OLS and also
provides a correct distribution for 5 in finite samples.

Of course, as with straight OLS, its assumptions need not be correct.

Two-step GLS is a little easier computationally, and has the same
asymptotic distribution as likelihood-based GLS. It does not have the
same finite-sample justification. It is likely to provide a good starting
point for iterative estimation and MCMC study of the likelihood in the
likelihood-based framework.



GLS with sandwich?

GLS here assumes Ele. e/ ] | X = Q. In other words, that the
covariance matrix of residuals within a group does not depend on X. So
a sandwich covariance matrix for the GLS estimate of 5 might differ from
what GLS delivers, even asymptotically. The usual tradeoffs are here —
robustness against deviation from the GLS assumptions, vs. robustness
against inapplicability of asymptotic theory in this sample.



Group-specific shifts

On this topic, these notes are closer to the way Lancaster sets out this
topic than to the way | did it in class.

Same grouped data model, with one change:
Yig = XigB+vg+eig, t1=1,...,n, g=1,..., M.

What's new is the v,, a “disturbance” that changes all observations within
a group by the same amount. I've used a greek letter for it, which makes it
seem natural to treat it as part of the error term.



Applying GLS

If we assert that

e| X ~N(0,0% I ), v| X ~N@O,7° T ),
MnxMn M x M
and ¢, v independent, then this is a special case of grouped data with non-

scalar covariance matrix. Instead of an unconstrained residual covariance
matrix €2 for data within each group, we have the parametric form

Q=0c*T+71°1

nxXn

We could stop here, simply referring back to the discussion of likelihood-
based GLS, but it is worth noting that there is an analogue of weighted
least squares available because of the special structure of €.
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Between and within regressions

As usual, if we can find a matrix W such that WQW = I, then OLS
on the transformed data X7, = W'X ., vy, = W'y, is equivalent to GLS.
With this group-effect 2 matrix, we can choose W to have the symmetric
form W = o~ 1(I — £1) + 1. It is possible to compute § from o* and
72, but this involves messy algebra. What matters for our purposes is that
there is a symmetric inverse square root W of Q2 of this form, and that

1
5 .

I4
250 ON

o —— 0.
T2—00
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Between and within regressions

Note that with this choice of W, X* = W’'X., = 07X, +6X.g, where
X is a matrix in which each row is the mean of X.g within group g and X 4
is the deviation of X, from its group mean. Note also that X’/ X , = 0,

because the columns of X., are constant and the sum of each column of
X.g IS zero.

Therefore
X*/X*:J_QX/X—F(SQX/X, X*/ *:X/Q—FX/_,

where the x'd vectors and matrices are of full length Mn, consisting of the
grouped data stacked up vertically.
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Between and within regressions

This lets us write the GLS estimator as a matrix weighted average of
the OLS estimator 3,, using X, y, called the “within” regression, and the
OLS estimator 3, using the group means, called the “between’” regression:

BGLS _ (X*/X*)—lX*/y* _ (U_QX/X+(52X/X)_1<O'_2X/X6Aw—|—52X/XBb>.

This decomposition is of some use to programmers and to you if you try to
look at small data sets with a calculator. But the important insight from it
Is that the GLS estimator, which is the classic random effects estimator,
becomes the ordinary OLS estimator in the limit as 72 becomes very small
(as we might have expected) and becomes purely the “within" regression in
the limit as 72 gets very big. But this pure within regression is also what is
known as the fixed effects estimator.
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Fixed effects

The fixed effects estimator is what emerges if we assert dogmatically
that the variance of the group means v., is infinite — i.e. we put a flat prior
on v,. It is also, as we verified above, the result of using data on deviations
from group means in an OLS estimation. And finally, it is also the result if
we estimate by OLS the equation

Yig — Cqg + ngﬂ + €ig »

treating the c,'s (a new name for v,) as parameters to be estimated along
with (3.
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Fixed vs. random effects

e Fixed effects always estimates a more dispersed (higher variance)
distribution of c,'s across groups than the true distribution of ¢,'s,
and this does not get better as the number of groups increases.

o Fixed effects requires giving up any attempt to estimate coefficients of
variables that are constant within groups. Random effects models can do
so, because they exploit the assumption that v, and X are uncorrelated.

o Fixed effects gives consistent estimates of 8 as M — oo, even if v, and
X.4 are correlated, while random effects does not.

15



Random effects correlated with X

Yig = ngﬁ + Cq + €ig s E[é.g ‘ Xg] =0 (1)
Xg=vcs+X,, E[X,|cg =0 or (2)
Cg:)z-g¢+£ga E[fg |Xg] =0. (3)

Wooldridge calls this the “Chamberlain-Mundlak device”. Using (3), we
can substitute into () to obtain

Yig = XighB + X. g0 + &4 + €34
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Random effects correlated with X

Yig = XigB + X g + &5 + €ig

In this equation, X ., is a single vector of length nK containing all the values
of X;, that occur in the group. It is the same vector for every ¢ in the
group. This is nk additional parameters. That is still usually smaller than
the number of ¢, parameters that enter the straight fixed-effects estimator.
In some applications it might be reasonable to claim that the correlation of
v, with the X.g vector should be only via the group means of the X's. In
that case the )?.g vector could be replaced by the )_(.g vector, making the
number of extra parameters much smaller.
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Random effects correlated with X

Yig = XighB + X. g0 + &4 + €44

This is an equation that can be estimated by standard grouped-data
GLS. It does allow consistent estimation of Var(v,), but it does not allow
estimation of coefficients of possible X., variables that are constant within
groups, because for such variables the corresponding columns of X., and

X.4 are identical, and thus collinear.
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Mixed models

This term does not have a precise and widely accepted definition,
but generally refers to models in which not only the constant, but also
coefficients of X., variables, are allowed to be random and vary with g.
The general form, assuming the constant vector is treated as part of the

X.4 matrix, is

Yig — X’igﬂg + 2297 + €ig
Ele| X, 2] =0

E[ﬁg ‘ sz] :5]
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Mixed models

Yig — X’igﬂg + Zz'g'Y + €ig
Ele| X, 2] =0

E[8,] | X, Z] = p]

Some assumption on the joint distribution of 8, and ¢;;, is needed. A
common choice would be to make 3, and ¢;, jointly normal and independent
of each other, with the full Mn x 1 &;, vector N(0,c2I) and

Var(8,) =1 ® X3,

where >3 is an unknown and unrestricted covariance matrix and the “A® B"
notation refers to a Kronecker product.
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Kronecker product

A® B, where Aism xn and B is p X q, is an mp X nqg matrix consisting
of mn p x q blocks, with the block in the i'th row position and j'th column
position equal to a;;B. For example

By -l -

A® B =

W O =N
= 00 DN =
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Why mixed models?

They give a fully articulated probability model for the data, and thus
a likelihood function, while addressing the possibility that Ele. e/, | X g
might depend on X.,. This possibility is what clustered standard errors
allow for that GLS does not. Clustered standard errors allow any kind
of dependence between X., and 5.gsfg, while mixed models restrict the
dependence to linearity.

Mixed models used to be intractably difficult to estimate, but with Gibbs
sampling MCMC, they can be handled in a very straightforward way.

It might be a good way for you to test your understanding of Gibbs
sampling to see if you can describe a convenient Gibbs sampling scheme for
a mixed model.
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“Fixed effects” for mixed models?

Mixed models almost always are used treating 3, as random. But there
is an analogue to the simple fixed effects approach for these models: just
as we split the constant into a bunch of group-dummy variables for fixed
effects, we can split up the X matrix into a block diagonal form with X,
blocks down the diagonal and zeros off diagonal, giving each column of this
matrix its own free parameter and applying OLS.

The problem with this is that if there are very many columns in X, the
fact that OLS with fixed effects allocates too much explanatory power to
the fixed effects is multiplied in a mixed model — here it is not only the
constant terms, but the coefficients on all the group-specific variables, that
have an over-dispersed distribution.
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GMM

Generalized Method of Moments
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A large class of estimators

When the parameter (5 takes on its true value,

Elg(y:, B)] =0
Cov(g(yt,ﬁ)) g

The first of these, the moment condition, does not hold when 3 not at its
true value.
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A large class of estimators

Then why not estimate 8 from a sample {y1,...,yr} by solving
| T
gr(Yr,B) == _9(y,f) =07

=l

In other words, solve to set the sample average of g(y:, 5) equal to its
theoretical population value.
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A large class of estimators

Then why not estimate 8 from a sample {y1,...,yr} by solving

T

gr(Yr, B) = %Z g(y,3) =07

=l

In other words, solve to set the sample average of g(y:, 5) equal to its
theoretical population value.

This is GMM.
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e MLE:

o OLS:

o |V:

GMM covers many cases

01 ¢
9(yt, B) = Ogg% )

9(yt, B) = Xi(y: — X4)

9(ys, B) = Zy(ys — X:P)
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What if the ¢g(y;, 3) vector is of length m > k, the length
of the 5 vector?

Then, mechanically, we need a k X m weighting matrix Wy, which need
not be the same in every sample size, so we can solve

Wrgr(Yr,8) =0.

Any weighting matrix gives us some version of GMM.

What is the best weighting matrix?
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Asymptotic covariance matrix of GMM, i.i.d. case

Take Taylor expansion of the equation to be solved around the true
value (3 :

91 (YT, Bo
p

Wrgr(Yr, 8) = Wrgr(yr, Bo) + Wr (B = Bo) -

This gives us the approximate solution for 8 — 3y as

g7 (Y, Bo)
p

B—Bo=—Wr )" Wrgr(Yr, ) .
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Asymptotic covariance matrix

T

19gr(Yr,Bo) 1 Zag<yt76) Py

T 0p3 T — 0p t—00

by the LLN, where A is some limiting matrix. We need to assume A is of

full column rank. Also assume W % W . The CLT tells us that
—00

%QT(YTa 6) g N<07 B) ) where B = E[g(yta BO)g(yta 60)/] :
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Asymptotic covariance matrix

This lets us conclude that
VT (Br — ) = N(0, (WA "WBW'(AW')~1).

But we get to choose W. How to do it so as to make this matrix “small”?
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Optimal W

We'd like to make the covariance matrix “small” in the sense that with
anything other than the optimal W, the covariance matrix differs from our
optimal one by a positive semi-definite matrix. In other words, every linear
combination of ’s has either the same or lower asympotic variance. This is
the same as making the inverse of the covariance matrix as big as possible,
in the same sense of “bigger”.

The inverse of the limiting covariance matrix is

AW (WBW')"'WA.
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Optimal W

The covariance matrix of the “explained sum of squares” in a regression
of the columns of a matrix Y on X is YX(X'X) 'X'Y. If we choose
X = BY2W’' and Y = B~1/24, this explained some of squares expression
matches our inverse covariance matrix. That is, the inverse of the covariance
matrix is just the explained sum of squares from a regression of B~1/2A on

BY/2W'. (B2 can be any square root of the B matrix. We're taking it to
be the symmetric square root.)

Obviously the explained sum of squares is biggest when we make X =Y,
which we can do here by choosing W to make

BY?2w'=B"124, - W' =B 'A.
This makes the limiting covariance matrix (A’B~1A)~1.

33



GMM derived as a minimization

The GMM estimator can be defined as one that minimizes

gr(B)Q g7 (B).

The first-order condition for a minimum is

<agT<YT73)> /Q—lgT(YT B) —0.

op
If g() (and hence §2) are of the same dimension as 3 and dgr /03 and
are non-singular, this equation is solved if and only if gr(Y7,3) = 0, so

the estimator is just the GMM estimator as we have previously defined it.
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When g is of higher dimension than (3, the first-order condition defines a
GMM estimator in our previous notation, with a weighting matrix

WT _ (89T%¥75T> Q_l .

We know that the optimal limiting form for Wy is W/ = B~1A, while
this W from the minimization converges to A’QQ~!. So to get optimal
weighting we must set

Q=B = Elg(y:, )9y, 8)'] -
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ML as GMM

Suppose y; is i.i.d. with pdf p(y; | €). Then

Olog p(y: | 0) B
E[ o 16l =0.

This follows because, when we write the expression out as an integral, it
becomes

1 Op(y | 0) 8/
0) dys = 5 0) dy; = 0.
/ p(ye | 0) 00 p(ye | ) dye = o5 [ p(ye | 0) dye

The last equality follows because a pdf always integrates to one, and p() is
a pdf for y for every 6.
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ML as GMM

Now we can set g(y;, 8) in the GMM formulas equal to 0 log p(y; | €)/00,
and our previous derivations of the asymptotic normal distribution for the
GMM estimator apply. Since there are exactly as many moment conditions
as parameters (one partial derivative per parameter), we don't have to
worry about optimal weighting. The usual A7 B(A™1)" expression for the
asymptotic covariance matrix of GMM with no weighting applies, where
here

[0 log p(y: | 0)
9600

. |0logp(y; | 0) rOlogp(y: | 0)\’
B=FE o0 ( BT ) '
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ML as GMM

As a final simplification, observe that

Ologp(y: | ) /0logp(y: | )\’ 1 9*p(y. | 0)
E[ ggey ( ggey >]:/p(yt|9) geyaef

- / <p(yt1! 6’)819(?6?' 9)> (Mytl‘ 9)8]?(?9‘ Q)>/p(yt | 0)dy: =0+ B

That is, in the maximum likelihood case, so long as the likelihood is in
fact the pdf of the observed data, —B = A. The fact that the first term in
the expression above is zero follows because it is the second derivative with

respect to 0 of the integral of p(y; | ) with respect to y; — which is one,
for all 6.

p(y: | 0) dyy
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ML as GMM

Thus we arrive at the conclusion that the asymptotic covariance matrix

of the MLE is .
_ [0 logn(y: | 0)
0000’

This can be consistently estimated, in the i.i.d. case, as the sample average
of these second derivative matrices.
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ML plus sandwich?

The matrix we have been calling B can be estimated directly as the
sample average of the crossproducts of the scores (the derivatives of the
log likelihood w.r.t. the parameters). In the case of ML, as we have just
observed in the previous slide, we can instead use the fact that B is also the
expected value of minus the second derivative of the log likelihood. This
expected second derivative matrix can be found analytically as a function
of the parameters 6, which are generally much smaller in number than
the elements of the matrix of cross-products of scores. Therefore it is
more efficient, maybe much more effficient, to use the second derivative
matrix, plugging in estimated values of #, rather than the estimate based
on averaging the sample scores.
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ML plus sandwich?

However, this depends on trusting the model to be correct when 6 is
at its true value. If the likelihood function is wrong, the MLE 6 still
converges to some well-defined probability limit 6., in regular cases, and it
can be shown that there is a sense in which p(y; | 6.,) must be as close as
possible to the true pdf — but it is not the true pdf for y;. If it is not, then
using the full sandwich A='BA~! gives the correct asymptotic covariance
matrix, while the (—A)~! efficient estimator is incorrect.

This is the familiar tradeoff: when the efficient estimate based on
trusting the model is different from the “asymptotically robust” estimator
for the covariance matrix, do we use the robust estimator, or do we take
the difference as a criticism of our model and modify the model? This is
the same issue that arises in deciding whether to use an HCCM covariance

matrix or o%(X’X)~! in OLS.
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Thinking about instrumental variables

[For this topic, see the paper “Thinking About Instrumental Variables”,
on my web site.] The main theme of that paper is that, when using
asymptotic distribution theory for inference, it is useful where possible
to examine the likelihood function for a model that would exactly justify
working with the statistics (i.e., functions of the data) that enter the
asymptotic distribution theory. For linear IV or 25LS models, these statistics
are just first and second moments of the endogeneous variables Y and X
and the instrumental variables Z. The distribution that makes these
sufficient statistics (and hence implies that we lose nothing by basing our
inference entirely on them) is a joint normal distribution. With the joint
normality assumption, we can construct a likelihood function. Maximizing
that likelihood produces what is known as the limited information maximum
likelihood (LIML) estimator, which has the same asymptotic distribution as
2SLS, but is different in finite samples.
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Thinking about instrumental variables

Using the likelihood function is helpful in handling the two “breakdown
cases’ for 2SLS: weak instruments and embarrassingly many instruments.
With weak instruments, the likelihood becomes very non-Gaussian if there is
much probability weight on low R? in the regression of X (right-hand-side
variables) on Z (instruments). Whether this is a problem and invalidates
usual asymptotic approximations can be checked in a particular sample by
examining the likelihood function to see whether its non-Gaussian character
shows up in regions of high posterior probability.

With embarrassingly many instruments, the regression of X on Z
produces R?'s of one, or nearly one, and we know this is from there being
few degrees of freedom, not because the true R? is that high. 2SLS
collapses to OLS in this case, while likelihood-based inference continues to
give useful results.
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Thinking about GMM

The ideas in “Thinking about instrumental variables” apply in principle
also to GMM, but with GMM there is no general, automatic way to
arrive at a model whose sufficient statistics match those generating the
GMM estimator. Usually, converting GMM estimates to statements about a
probability distribution for the unknown parameters # must rely on the large-
sample approximation that vT'( — 6) ~ N(0,X), and that this assertion
holds true whether we treat it as an assertion about the distribution of 8 | 6
(frequentist) or about the distribution of 6 | § (Bayesian).
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