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NTRODUCTION

mproper analysis of correlated observations, such as repeated measurements on the same
erson, is a common error in medical studies. This article will review examples of correlated
ata, demonstrate the errors that arise when correlations are ignored, and discuss how to
orrectly analyze these data.

XAMPLES OF CORRELATED OBSERVATIONS

orrelated data arise when pairs or clusters of observations are related and thus are more
imilar to each other than to other observations in the dataset. Observations may be related
ecause they come from the same subject—for example, when subjects are measured at
ultiple time points (repeated measures) or when subjects contribute data on multiple body
arts, such as both eyes, hands, arms, legs, or sides of the face. Observations from different
ubjects also may be related—for example, if the dataset contains siblings, twin pairs,
usband-wife pairs, control subjects who have been matched to individual cases, or patients
rom the same physician practice, clinic, or hospital. Cluster randomized trials, which are
erformed to assign interventions to groups of people rather than to individual subjects (for
xample, schools, classrooms, cities, clinics, or communities), also are a source of correlated
ata because subjects within a cluster will likely have more similar outcomes than subjects

n other clusters.

HE CONSEQUENCES OF IGNORING CORRELATIONS

any statistical tests assume that observations are independent. The application of these
ests to correlated observations will lead to the overestimation of P values in certain cases
when one considers within-subject or within-cluster effects) and underestimation in others
when one considers between-subject or between-cluster effects). These errors are illus-
rated in the following sections.

ithin-Subject/Within-Cluster Comparisons

hen subjects are compared with themselves under multiple treatments or at different time
oints, these are called within-subject comparisons; when they are compared with related
ubjects (such as twins), these are called within-pair or within-cluster comparisons. The
dvantage of comparing a subject to himself or herself or to a related person is that this
omparison often results in considerable reduction in variability. Analyses that ignore the
orrelations will overestimate the variability, thus artificially increasing P values and
ecreasing the chances of observing a significant effect (decreasing the statistical power and

ncreasing the type II error rate). Two examples follow that illustrate this problem.

xample 1. The authors of a recent randomized, blinded trial compared the efficacy of 2
unscreens by using a split-face design [1]. Fifty-six subjects applied sunscreen with a sun
rotective factor (SPF) of 85 to one side of their face and an SPF of 50 to the other side of
heir face (the application sides were randomly chosen, and the sunscreen types were
oncealed) before spending 5 hours participating in outdoor sports on a sunny day.

nvestigators determined the occurrence of sunburn on each side of the participants’ faces at
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he end of the day. A person’s tendency to burn on one side of
is or her face is highly correlated with his or her tendency to
urn on the other side. However, when the data were ana-

yzed, these correlations were ignored: the authors reported
hat 1 of 56 participants were burned on the SPF 85 side of
he face, whereas 8 of 56 were burned on the SPF 50 side
P � .03, Fisher exact test, Table 1a). This analysis treats all
bservations equally, as if there are 112 unrelated sides of the
ace. Table 1b shows the correct way to present and analyze
he data.

Volunteers who burned on both sides of their face (n � 1)
r neither side (n � 48) do not help us to discriminate
etween the performance of SPF 85 and SPF 50; only the
olunteers who burned on a single side (n � 7) are informa-
ive. The correct analysis—called the McNemar exact test
2]—focuses only on these discordant subjects. In all 7 cases,
he sunburn occurred on the SPF 50 side. The 2-sided P value
ssociated with this extreme outcome (a 7-0 split) is .0156
determined by a binomial distribution with n � 7 and P �
5). Thus the difference between the sunscreens is actually

ore significant than the authors have reported. Although

able 1a. Original data table from Russak et al [1]

Sun Protection Factor Sunburned Not Sunburned

85 1 55
50 8 48

� .03, Fisher exact test.
Reprinted with permission [1].

able 1b. Correct presentation of the data from Russak et al [1]

SPF-85 Side

SPF-50 Side

Sunburned Not Sunburned

unburned 1 0
ot sunburned 7 48

� .0156, McNemar exact test.
Reprinted with permission [1].

able 2. A simple hypothetical dataset involving correlated d

Twin Pair

Diastolic Blood Pressure
in the Less Active Twin,

mm Hg

D
i

1 87
2 88
3 80
4 79
5 77
6 69

ean (SD) 80.0 (7.0)
est statistic Two-sample t-test (incorre

T10 �
�3.5

�7.02

6
�

7.02

6

�

p � .41
he P values (.03 vs .0156) do not differ enough to change the
tudy’s conclusions, they can differ markedly in many cases,
s the next example illustrates.

xample 2. Consider a simple hypothetical dataset in
hich investigators conducted a study with twins to examine

he association of exercise with blood pressure. Six pairs of
wins reported their physical activity levels and had their
lood pressures measured. Investigators hypothesized that
he more active twins would have lower blood pressures than
he less active twins. The results are presented in Table 2.

The mean blood pressure for the more active twins is 3.5
m Hg lower than for the less active twins (76.5 vs 80.0). If
e ignore the correlations and analyze the data as 2 indepen-
ent groups, this difference is not statistically significant (P �

41, 2-sample t-test). However, if we correctly analyze these
ata by focusing on the differences within twin pairs, it is
tatistically significant (P � .02, paired t-test). The P value is
educed because the variation in blood pressure within twin
airs (standard deviation � 2.6) is considerably less than
etween unrelated twins (standard deviation � 7.0 or 7.1)
nd because the paired t-test only has to account for one
ource of variability (variability within pairs) rather than 2
ources (variability from two groups of twins).

etween-Subjects/Between-Cluster
omparisons

hen comparisons are made between unrelated subjects or
lusters that have each received just one treatment, these are
alled between-subjects or between-cluster comparisons. In
hese situations, ignoring correlations in the data will lead to
n underestimation of P values. For example, if a treatment
orks in a person’s left eye, it is more likely to work in his or
er right eye; thus it is unfair to count good outcomes in both
yes as 2 independent pieces of evidence for the treatment’s
ffectiveness. Doing so artificially increases the sample size,
ecreases the P values, and potentially results in effects being

win pairs)

lic Blood Pressure
More Active Twin,

Mm Hg

Difference
(More Active – Less Active),

Mm Hg

82 �5
83 �5
78 �2
80 �1
71 �6
65 �4

76.5 (7.1) �3.5 (2.6)
lysis): Paired t-test (correct analysis):

T5 �
�3.5

�2.62

6

� �3.31
ata (t

iasto
n the

ct ana

�0.86
p � .02
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860 Sainani ACCOUNTING FOR CORRELATED OBSERVATIONS
eemed significant when they should not be (a type I error).
wo examples follow that illustrate this problem.

xample 1. In a hypothetical trial, 50 patients with bilat-
ral eye disease were randomly assigned to receive an active
rug or a placebo solution in both eyes (sample size per
roup is 25 patients [50 eyes]). Treatment was considered a
uccess if symptoms improved by more than 50% in a given
ye. Table 3 shows hypothetical results from this trial.

Strong agreement between eyes was found—80% of the
ubjects had the same outcome in both eyes (� coefficient �
60). Thus treating the data as if there are 100 independent
yes will overstate the evidence for the drug’s effectiveness.
he informative sample size is actually somewhere between
00 and 50 (if there were perfect agreement between eyes, a
ubject’s second eye would contribute no independent evi-
ence of the drug’s effectiveness and the sample size would
e 50). The incorrect analysis (a �2 test or logistic regression)
ields an artificially low P value of .046, whereas the correct
nalysis (a generalized estimating equation, corrected for
ithin-subject correlation) yields a nonsignificant result of
� .11.

xample 2. Cluster-randomized trials are a common
ource of correlated data, but researchers often neglect the
orrelations in their analyses [3,4]. Calhoun et al [4] present
hypothetical example that shows the consequence of this

ailure. In this hypothetical randomized trial of an interven-
ion to reduce physician error, 8 physicians were randomly
ssigned to a reduced shift length (n � 4) or control condi-
ion (n � 4). The outcome was the average number of
harting errors per patient; data were obtained on 10 patients
er physician for a total of 80 patients. Table 4 shows results

rom this hypothetical trial.

able 3. A simple hypothetical dataset from a trial in which 50
lacebo (n � 25) in both eyes

Analysis
N (%) of Eyes Improving

the Control Group

ssuming eyes are independent* 17/50 (34)
orrecting for within-subject
correlation†

17/50 (34)

Data were analyzed with unconditional logistic regression.
†Data were analyzed by the use of a generalized estimating equation, corr

able 4. A hypothetical cluster-randomized trial, from Calhou

Analysis

Average Charting
Control Physicia

Patients, 4 Ph

ssuming patients are independent* 2.75
orrecting for within-physician
correlation†

2.75

Data were analyzed with a 2-sample t-test.

†Data were analyzed by the use of hierarchical linear modeling.
Observations made by the same physician will be highly
orrelated. For example, 2 of the 4 physicians in the inter-
ention group are highly conscientious individuals who
ade no charting errors during the study period; thus it is

lear that these 2 physicians each contribute just 1 unit of
vidence for the intervention’s effectiveness, not 10. If the
ata are analyzed as 80 independent observations (with use
f a 2-sample t-test), the P value is highly significant, but the
orrect analysis (a hierarchical linear model) yields a nonsig-
ificant result of P � .273.

OW TO ADDRESS CORRELATED
BSERVATIONS

s the aforementioned examples demonstrate, correlated
ata require specialized statistical methods. Table 5 lists
xamples of statistical tests that assume independence and
he corresponding tests for correlated data. For example, a
-sample t-test is used to compare continuous, normally
istributed outcomes between 2 independent groups,
hereas a paired t-test is used to compare the same outcomes
etween 2 correlated groups.

Investigators often are less familiar with tests for corre-
ated data than for uncorrelated data and may find them more
hallenging to implement and interpret. Thus many authors
hoose to handle correlations simply by removing them from
he dataset. Although this approach is appropriate in certain
ituations, it often results in an unnecessary loss of informa-
ion and statistical power. For example, one way to remove
orrelations is to change the unit of analysis. In the aforemen-
ioned physician study, the intervention was applied to phy-
icians, not patients, so it makes sense to analyze the data at
he physician rather than patient level; in this case, we would

cts were randomly assigned to receive active drug (n �25) or

(%) of Eyes Improving in
the Treatment Group

P
Value

Odds Ratio and 95%
Confidence Interval

27/50 (54) .046 2.28 (1.02�5.11)
27/50 (54) .11 2.28 (0.83�6.28)

r within-subject correlation.

l [4]

s From
� 40
ns)

Average Charting Errors From
Treated Physicians (n � 40

Patients, 4 Physicians) P Value

1.7 �.0001
1.7 .273
subje

in N
n et a

Error
ns (n

ysicia
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ust compare the average error rate of the control physicians
n � 4) to that of the treated physicians (n � 4). However,
nalysis at the cluster level greatly reduces the sample size
nd statistical power; thus, where possible, it is preferable to
aintain a lower unit of analysis and correct for within-

luster correlations.
Another way to remove correlations is to ignore data

oints—for example, researchers may only analyze one eye
r one time point per subject even though they have data on
oth eyes or from multiple time points. However, this ap-
roach wastes valuable data, resulting in an unnecessary
eduction in statistical power.

ONCLUSIONS

orrelated observations require specialized statistical tests
hat account for the correlations. Incorrectly analyzing these
ata leads to erroneous statistical inferences—that is, P val-
es are overestimated for within-subject or within-cluster
omparisons and underestimated for between-subject or be-
ween-cluster comparisons. This problem is a common one

able 5. Common statistical tests used to compare indep
bservations, by the type of dependent (outcome) variable

Dependent Variable Test for Independent

ontinuous, normally distributed Two-sample t-te
ontinuous or ordinal,
non-normally distributed

Wilcoxon rank s

ontinuous, normally distributed ANOVA
ontinuous, normally distributed Linear regressio
inary/categorical �2 test
inary/categorical Fisher exact tes
inary/categorical Logistic regress

NOVA � analysis of variance.
n the medical literature, so readers should pay particular
ttention to this issue. Authors tend to be less familiar with
he statistical tests available for correlated data than for un-
orrelated data and thus may choose to remove correlations
rom their data rather than account for them. Although
ppropriate in some cases (eg, when the correct unit of
nalysis is truly the cluster), this approach often results in an
nnecessary loss of information and statistical power.
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